
lated factors: (a) the reactivity of phenol toward the cyclic anhy- 
dride uersus the reactivity of phenol toward the in situ formed 
acetic anhydride, and ( b )  the equilibrium concentration of acetic 
anhydride resulting from the solvolytic reaction of acetic acid with 
the cyclic anhydride. The more reactive the cyclic anhydride, the 
more readily it reacts with both phenol and acetic acid. 

The present study provides a further quantitative picture of the 
effect of molecular structure on the partitioning between rate-de- 
termining formation and breakdown of the energy-rich tetrahedral 
intermediate for reaction a t  an acyl function. The poor leaving 
group tendency of the constrained neighboring carboxyl group in 
the reaction of phenol with cyclic anhydrides, due to the inclina- 
tion of the neighboring carboxyl to undergo the reverse intramo- 
lecular reaction, resulted in tetrahedral intermediate breakdown 
being the rate-determining step. It is postulated that the good 
leaving group tendency of the unconstrained acetic acid in the re- 
action of phenol with the acyclic anhydride, acetic anhydride, re- 
sults in tetrahedral intermediate formation being the rate-deter- 
mining step. These differences in mechanism between the reactivi- 
ty of cyclic and acyclic anhydrides in acetic acid compared to their 
hydrolytic reactivity must be due to the reduced ability of acetic 
acid, when compared to  water, to  solvate polar transition states. 
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Dissolution 
Oxalic Acid 

Patterns of Polydisperse Powders: 
Dihydrate 

J. T. CARSTENSEN” and MAHENDRA PATEL 

Abstract 0 The dissolution of oxalic acid dihydrate crystals of 
log-normal particle-size distribution in 0.1 N HCI was studied. A 
biphasic cube root dependence was found; the slopes of the initial 
cube root plots were consistent with theory based on dissolution of 
isometric, isotropic particles where assumptions were made of ( a )  
sink conditions, ( b )  particle-size-independent solubility, and ( c )  

particle-size-independent film thickness of adsorbed liquid layers. 

Keyphrases 0 Dissolution of polydisperse powders (oxalic acid di- 
hydrate)-dissolution patterns, equations 0 Oxalic acid dihydrate 
(polydisperse powder)-dissolution patterns, equations 0 Pow- 
ders, polvdisperse-dissolution, oxalic acid dihydrate, equations 

The rates of dissolution and the mechanisms in- Whitney equation (6), arrived a t  the so-called cube root dissolu- 
volved in the dissolution process have been the tion rate law: 

subiects of manv Dublications in the last decade. V E C - W = K t  (Eo. 1) 
most work done On powders has where Wo is the initial weight of the powder, W is the of 

been restricted to monodisperse powders (1-4). undissolved powder at  time t ,  and K is an apparent dissolution 
rate constant having units of mo eight)''^ per -unit time. The as- 
sumptions made in the derivation of Eq. 1 are: ( a )  all particles dis- 
solve isotropically, ( b )  the particles are isometric, ( c )  the thickness 
of the diffusion barrier around each particle (the “film thickness,” 

BACKGROUND 

Hixson and Crowell (51, basing their derivation on the Noyes- 
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Figure 1-Dissolution pattern of a ‘Ifine”powder of isothermally 
recrystallized oxalic acid dihydrate. 

h )  is constant, ( d )  there are no particle-size solubility effects, and 
( e )  sink conditions exist. 

Most systems in pharmaceutical dosage forma are polydisperse 
systems; many investigators (7-12) have shown that particles pre- 
pared by procedures such as milling and precipitation produce 
skewed distribution functions which closely resemble log-normal 
particle-size distributions. 

The dissolution of polydisperse powders of log-normal distribu- 
tion was first studied by Higuchi and Hiestand (13) and Higuchi et 
al. (14). In their treatment, they approximated the log-normal fre- 
quency function: 

f(l0g x )  = I exp[(log x - log M)2/2~2] (Eg. 2) 
&(U) 

when expressed as a cumulative oversize distribution by the cumu- 
lative function: 

g ( x )  = K/x4 (Eq. 3) 

where x is the particle diameter, M is the geometric mean diame- 
ter, and u is the standard deviation of the distribution. The no- 
menclature employed in Eq. 2 is adhered to in this study. Good 
agreement with experimental values was found previously using 
the approximation in Eq. 3 (13,14). 

Carstensen and Musa (15) generated log-normal distributions by 
computer and followed the dissolution under assumptions (a)-(e);  
they found that the dissolution patterns could be approximated by 
a cube root law up to a critical time, t,, when the smallest particle 
of diameter no would be completely dissolved. Beyond this point, 
the cube root plot changes slope. The equation that held prior to 
the critical time was: 

where C, is the saturation concentration, and k is the dissolution 
rate constant in centimeters per second. The distributions generat- 
ed by Carstensen and Musa were all truncated (at + and -30). 
Equation 4 was found to hold in the limited range of u values test- 
ed; aside from the limitation of the u range tested, the equation’ 
suffers from having the slope, a, tend toward infinity when u tends 
toward zero. 

Brooke (16, 17) arrived at an exact expression of the dissolution 
rate profile of a nontruncated, log-normal, particle-size distributed 
powder with the previously mentioned assumptions (a)-(e).  The 
treatment was expanded to truncated distributions by envoking 
the Hatch-Choate (11) equation; this equation is applicable when 
u < 0.14 (18, 19). Brooke (17) also showed that a cube root rela- 
tionship could be explained by the theoretically rigorous treatment 
and suggested the following equation: 

m - m = exp[-2.54uD*l 2kCs mt (Eq. 5) 
PM 

where UD = 2.3~. Brooke’s equation has the same dependence on 
density, mean diameter, rate constant, initial weight, and solubili- 
ty as that of Carstensen and Musa (151, but the dependence on 
standard deviation in Eq. 5 is different; it does not shffer from the 
limitations with which Eq. 4 is afflicted. 

The equation reported by Carstensen and Musa (15) contains an error in 
the exponent to u and in the numerical factor; the equation given here is 
correct in relation to the data reported in Ref. 15. 

One main purpose of this study was to test whether real powders 
that do not contain spherical particles and do not (necessarily) ad- 
here to assumptions (a)-(e) follow a cube root law and, if so, 
whether Egs. 4 and 5 are applicable to the dissolution profiles. 
Benet (20) pointed out that in spite of the theoretical work pub- 
lished to date, no experimental work other than that of Higuchi 
et al. (14) has been published. 

The information obtained from dissolution of powders can be 
valuable regarding the bioavailability of oral doeage forme in &lid 
or suspension form. Carstensen (4), using data from Prescott et 01. 
(21), showed the relationship between the mean diameter of an 
orally administered powder and the fraction of drug absorbed. 

EXPERIMENTAL 

The test substance used was oxalic acid dihydrate2. It was re- 
crystallized by dissolving 100 g of oxalic acid in 200 ml of distilled 
water at 70’ and cooling the solution a t  a rate of about 1’110 min. 
This temperature was measured by a thermometer placed in the 
center of the beaker containing the solution. The temperature dis- 
tribution by this procedure is very uneven (differing by as much aa 
15’ between extreme points), giving rise to distributions that are 
somewhat off the log-normal distribution. 

The suspension was allowed to stand for 24 hr at room tempera- 
ture, and the crystals were then filtered off and air dried. The 
method produces crystals coarser than 70 mesh and as coarse as 4 
mesh. The dried crystals were segregated into mesh fractions with 
USP sieves. To avoid vitrification3, the fractions were stored in 
desiccators over saturated sodium chloride solution with excess ao- 
dium chloride (33% relative humidity). Oxalic acid dihydrate crye- 
tals of various mesh sizes were then blended in ratios that were log 
normal on a number basis. 

The individual particle weights were obtained by weighing 
counted numbers of particles in each mesh fraction. A microscopic 
particle-size distribution was carried out on a random sample of 
particles from a -20/+30-mesh fraction. The density of oxalic acid 
was determined pycnometrically, using saturated oxalic acid aolu- 
tion as the liquid vehicle. 

The general dissolution method was as follows. A 4-liter beaker 
was filled with 4 liters of 0.1 N HCl and placed on a magnetic stir- 
rer setup‘ equipped with a Teflon-coated stirring bar, 36 mm long 
and 8 mm in diameter; the solution was stirred at 400 rpm. This 
agitation condition allows the crystals to be suspended, whereas 
lower speeds do not accomplish good dispersion of the solid after it 
is added. The liquid in the beaker was equilibrated in a water bath 
at 25.806 in a room a t  25 f 0.2’. Immediately prior to the start of 
the dissolution experiment, the beaker was transferred to the mag- 
netic- stirrer; 80 g of oxalic acid dihydrate powder was then added 
and the timing was started. 

Approximately 6-ml samples were removed by hypodermic sy- 
ringe at various time points. After removal, the sample was emp- 
tied into a test tube, exactly 5 ml was removed, and the oxalic acid 
content was determined by titration with 0.05 N sodium hydrox- 
ide. In dissolution studies carried out at temperatures other than 
room temperature, the 0.1 N HCl WBB measured out to 4 liters at 
room temperature and its temperature was then adjusted to the 
test temperature. Approximately 6-ml samples were taken as be- 
fore, but 5 ml was not removed until the sample reached room 
temperature. 

The solubility of oxalic acid dihydrate in 0.1 N HC1 was deter- 
mined at various temperatures, and the determinations were made 
using a thermostated shaker bath6. 

The dissolution of a single crystal of oxalic acid was determined 
by placing it on a hemmytometer slide, adding 3 drops of 0.1 N 
HCl, and observing the length, L ,  and breadth of the crystal micro- 
scopically as a function of time. 

* Mallinckrodt analytical reagent oxalic acid dihydrate, Mallinckrodt 
Chemical Works, St. Louis, Mo. 

3 The water vapor pressure over the salt pair oxalic acid + oxalic acid di- 
hydrate is 2.65 torr at 25: (22,23). and the water vapor pre%sure over aatu- 
rated oxalic acid solution 18 23 torr (97% relative humidity) at 25’ (24). ‘ Model 4812, solid-state magnetic 6 X 6 stirrer with thermostatically con- 
trolled hot plate. Cole Parmer. Chicago, IL -8 

5 With the agitation conditions used, additlon of 80 g of oxalic acid caused 
a temperature drop of 0 . 8 O .  

6 A uaterm water bath shaker model R-86, New Brunswick Scientific Co., 
New arunswick, N.J. 
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Table I - M i c  Acid Particles Used in a Particlesize 
Distribution with Mean by Number of M = 1500 pm 
and SD = 0.108 

Percent 
Weight of Particles 
Particles by  

Oversize Used/80 Number Number of 
Mesh Diameter, g of (Calcu- Particles/lO’ 

Fraction pm Sample lated) Particles 

-5/+6 3360 1.33 0.065 54,000 
-6/+10 2000 31.13 12.44 12,439,000 
-10/+20 840 47.38 86.40 86.450.000 
-20/+30 590 0.16 1.09 1;057;000 

RESULTS AND DISCUSSION 

It was mentioned previously (1) that subst+nces, when crystal- 
lized from solution, tend to have particle sizes with a truncated 
log-normal distribution. Oxalic acid, when recrystallized isother- 
mally from water, indeed shows a log-normal particle-size distribu- 
tion. By varying the temperature a t  which the crystals are allowed 
to grow, it is possible to alter the mean particle size and standard 
deviation. However, the magnitudes of the standard deviations are 
all close so that if it were desired to study the effect of the stan- 
dard deviation of a powder sample on its dissolution pattern, then 
isothermally recrystallized powders do not offer an approach that 
will allow a sufficiently wide variation in the variable to permit 
data analysis. Such powders, however, dissolve in a cube root fash- 
ion as predicted previously (15-17). The dissolution of a sample of 
isothermally recrystallized oxalic acid with a log-normal distribu- 
tion, with a mean of 250 pm and a standard deviation of u = 0.13, 
is shown in Fig. 1. 

It was predicted by computer simulation (15) that when u is not 
excessively large, a cube root plot of amounts undissolved versus 
time should give a biphasic linear plot. The point where the two 
lines intersect occurs a t  the critical time, t,, corresponding to the 
win t  in time where the smallest Darticle of the orieinal Dowder 

L 
Figure 2-Actual ( top )  and idealized (bottom) crystals of oxalic 
acid dihydrate. 

average (0.070 versus 0.0715 cm) and the mesh limits (0.048-0.095 
cm). Furthermore, the average volume in Table I1 (0.73 X ml) 
multiplied by the density of oxalic acid dihydrate (1.6 g/ml) gives a 
result fairly close to the correct weight per particle (1.2 versus 1.0 
mg). 

It is seen from Fig. 3 that the particles within the mesh fraction 
of a nonisothermally crystallized powder are fairly normally dis- 
tributed7. Since the log-normally distributed powders are made by 
mixing mesh fractions in log-normal ratios, the powders can only 
be claimed to be approximately log normal, since the distribution 
within the fractions themselves is normal7. Brooke (25) discussed 
the ramifications of the use of mean mesh size diameters on the re- 
sults of cube root dissolution. 

One assumption made in deriving both Eqs. 4 and 5 is that the 
particles dissolving are isometric; i.e., the surface area, 0, can be 
related to the volume, Q, by: 

sample has just dissolved completely. It is noted in Fyg. 1 chat the 0 = r ( Q P 3  (Eq. 6) 
cube root plot is quite linear but do& not appear to bebiphasic; on 
the other hand, it does not intercept a t  the origin but rather a t  a 
positive y value. This result is due to the particles being too small 
(and the sample, in a relative sense, having too large a standard 
deviation) to allow detection of the initial phase. 

Since attempts to grow particles of substantially larger mean di- 
ameters by isothermal recrystallization were not successful, larger 
crystals were grown nonisothermally. Log-normal populations 
were then obtained by sieving these coarser crystals and reblend- 
ing the obtained fractions in ratios that were log normal on a num- 
ber basis. 

The data of numbers of particles from various mesh fractions 
used to produce these distributions are shown in Table I. The oxal- 
ic acid dihydrate crystals are not altogether regular in shape but 
appear microscopically -to be parallelepipeds of length L and 
breadth B (Fig. 2). 

A microscopic count from a -20/+30-mesh fraction is shown in 
Fig. 3. On the average, the length L is 2.7 times the breadth B. The 
volume, Q;isLB2 = 2.7B3, and the dimension is = (2.7B3)’I3 = 
1.39B (Table 11). The dimensions correspond well with the mesh 

Table 11-Number Distribution of Crystal Volumes in a 
-20/+30 Fraction of Nonisothermally Crystallized 
Oxalic Acid Dihydrate Crystals 

Dimension, 
Volume, (Q/2.7)1’3, Cumulative 

(ml) X cm Percent SD 

0.3 0.048 10 -1.28 
0.5 0.057 20 -0.84 
0.7 0.064 35 -0.38 
1.1 0.074 46 -0.12 
1.3 0.078 65 +0.38 
1.5 0.082 75 +0.68 
1.9 0.089 85 +1.04 
2.3 0.095 95 +1.65 

. -  
If, as seen in Fig. 2, the volume Q = LB2 and the surface 0 = 2B2 + 4BL, then Q and 0 cannot be placed in a relationship as dictat- 
ed by Eq. 6 without involving B and L. For an isometric shape, 
e.g., a sphere, the relationship in Eq. 6 is obtained without involve- 
ment of dimensions [the factor y being ( 3 6 ~ ) ~ ’ ~  for a sphere]. 

It was found microscopically that L = 2.7B on the average. If 
this is the case throughout the dissolution, then Q = Z7B3 and 0 
= 2B2 + 10.8B2 = 12.8B2. This would lead to O/[Q2/3] = 10.3, inde- 
pendent of B or L ,  so that the particles can be considered isomet- 
ric only if the ratio stays constant at 2.7 during the dissolution. 
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Figure 3-Distribution of B values of oxalic acid dihydrate crys- 
tal of a -20/+30-mesh fraction. 

This result is due to the fact that the -20/+30 cut is close to the “mean” 
of the nonisothermally recrystallized sample. Other cuts may be of a trian- 
gular distribution. 
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Table III-Results from Three Different Runs under 
Identical Experimental Conditions 
(Mean = 1050 pm, u = 0.21) 

Letter 
Desig- 

- a m  - ~ m  - a m  - ~ m  nation 
g1I3 g’I3 g113 g113, in 

Seconds R u n i  Run i Run; Average Fig. 5 

15 0.43 0.40 0.49 0.44 A 
30 1.02 0.93 0.96 0.97 B 
40 1.31 1.24 1.21 1.25 C 
50 1.59 f.50 1.53 1.54 D 
60 1.83 1.72 1.72 1.76 E 
70 2.11 2.00 1.95 2.03 F 
80 2.30 2.15 2.13 2.20 G 
90 2.48 2.33 2.30 2.37 I 

105 2.70 2.54 2.55 2.60 H 
120 2.91 2.85 2.79 2.85 J 

It was stated previously (15, 16) that the particles should dis- 
solve isotropically (i.e., the dissolution rate constants should be in- 
dependent of the face of the crystal). This assumption is, however, 
not rigid, as will be shown. As noted in Fig. 2, there are four sur- 
faces with an area of size LB2. A decrease in B is due to dissolution 
from the sides of area LB, 80 the dissolution rate constant for these 
faces is denoted k ~ .  Similarly, there are two sides with areas of size 
B2 and a dissolution rate constant of kL, so that dissolution from 
the crystal occurs with the rate: 

-dm/dt = [4ksLB + 2 k ~ B ~ l C ,  (Eq. 7) 

If the length-to-breadth ratio is now denoted as f = L/E, then Eq. 
7 may be written: 

-dm/dt = B2[4kBf + 2 k ~ ] C .  (Eq. 8) 

Since Q = LE2 = fB3, it  follows that - (dm/dt)  = -p(dQ/dt) = - 
3pfB2(dB/dt). so the equation becomes: 

- W d t  = [ 4 b f  + k~]/(3pf) (Eq. 9) 

For Eqs. 4 and 5 to be structurally correct, dB/dt must be con- 
stant, which it is iff is time independent, i.e., if the particle is iso- 
metric throughout the dissolution. It is granted that this isometry 
is related to it being isotropic, but it is fairly easy to check the con- 
stancy off by conducting a dissolution rate experiment on a single 
crystal under the microscope. The results of such experiments are 
shown in Fig. 4; the dimensions decrease linearly with time, imply- 
ing that [4k~f + 2k~]/(3pf) is time independent. The original f 
value is 0.12/0.045 = 2.7; after 100 sec (when 67% of the crystal is 
dissolved), the ratio is 0.09/0.03 = 3, i.e., not much different. 

The first dissolution rate experiment was carried out a t  one par- 
ticular standard deviation and one particular mean. It was carried 
out three times to check reproducibility and to allow statistical 
evaluation of the critical time (Table 111 and Fig. 5). Visual exami- 
nation of Fig. 5 supports the predicted biphasic nature of the cube 
root plots and of the existence of critical times. To show this result 
in a 
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more quantitative manner, the three sets of experiments in 
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Figure 4-Dissolution of single crystal of oxalic acid dihydrate at 
25’ in 0.2 ml of 0.1 N HCl as determined microscopically. Left 
axis is length, L, of crystal; right axis is breadth, B, of crystal. 
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Figure 5-Results from three different runs under identical ex- 
perimental conditions; mean = 1050 p m  and SD = 0.21. 

Table I11 were subjected to statistical analysis. A linear regression 
analysis with nonzero intercept was carried out on the first four 
points (A, B, C, and D), and it was shown that the intercept was 
not significantly different from zero. The points were then fitted 
by least-squares fitting, and the following equation ensued 

(ES. 10) 

The data points F, G, H, I, and J were then fitted by least-squares 
fitting, and the observed equation was: 

- A F W  = 0.0163t 4- 0.894 0%. 11) 
By equating Eq. 11 with Eq. 10, one obtains: ( a )  the lower limit for 
te = 56 sec, ( b )  the average value for t ,  = 62 sec, and ( c )  the upper 
l i i i t  for t ,  = 68 sec. 

To show that the cuwe is biphasic, an alternative fit to the set of 
data was considered. This fit was a monophasic smooth curve, 
namely a power function of the type y = ax“. The data were fitted 
to this equation by the method of least squares (Table IV), and the 
least-squares fit was found to be: 

(ES. 12) 

If this curve is a proper type with which to fit the data, then the 
deviations from the actual points (y values) to those of Eq. 12 
should alternate in sign in fairly random fashion as shown by Dur- 
bin and Watson (26). It can be seen from Table IV that this is not 
the case; six negative deviations occur followed by three positive. A 
similar argument holds for other smooth curves tested ([lly] = 
a [ l / x ]  + b andy = a[l - exp(bx)]). 

In general, in the following, t ,  values were obtained in this fash- 
ion; the cutoff points between the “first” and “last” points were al- 
ways determined visually at first and then justified by inclusion of 
an extra point and demonstration of an increase in the residual 
sum of squares divided by n - 2 (syz2). The t ,  values obtained in 
this fashion are *lo%. 

- A F W  = (0.0308 i 0.0014)t 

ji = - A F W  = 0.0455t0.882 

Equation 5 may be written: 

This equation will be called a “reduced” form in the following dis- 
cussion. Equation 4, of course, can be written in reduced form as 

Table IV-Points in Fig. 5 Plotted as a Power Function: 
y” = -A* = 0.0455t“aa2 

Seconds 7 Y A = T - y  

15 0.496 0.44 +0.056 
30 0.914 0.97 -0,056 
40 1.178 1.25 -0.072 
50 1.434 1.54 -0.106 
60 1.684 1.76 -0.076 
70 1.929 2.03 -0.101 
80 2.170 2.20 -0.029 
90 2.408 2.37 +0.038 

105 2.759 2.60 +0.159 
120 3.103 2.85 +0.253 
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Figure 6-Dissolution pattern of oxalic acid dihydrate of geo- 
metric mean 1500 fim and SD 0.108 ( top) ,  0.129 (middle), and 
0.155 (bottom). 

well. According to this form, lines drawn according to the reduced 
equations should have slopes independent of the initial weight. To 
test this assumption, dissolution experiments were carried out 
with different amounts of oxalic acid dihydrate. The results are 
listed in Table V; the calculated rate constants are quite indepen- 
dent of the initial amount of solid. 

Dissolution rate tests were performed at  25O on powders of iden- 
tical mean diameter but with different standard deviations (Fig. 
6). The slopes of the lines, after division by (=4.3), should, 
according to Eq. 13, follow the equation: 

In [ s l o p e / m  =  CUD^ + In (2kC,/[pM]) (Eq. 14) 

The plot of the data in Fig. 6 according to Eq. 14 are shown in Fig. 
7; the linearity is obvious, and the least-squares fit line of Fig. 7 is: 

In [ s l o p e l m  = - 3 . 0 7 0 ~ ~  - 4.744 (Eq. 15) 

According to Brooke (16,17), c = -2.54, so that both the linearity 
of Fig. 7 and the numerical value (2.54 being close to 3.07) support 
his equation. Knowledge of the values of C,, p, and M allows calcu- 
lation of k from the intercept of Fig. 7; i.e.: 

In [2kC,/(Mp)] = -4.744 (Eq. 16) 

Inserting the values p = 1.60 g/ml, C, = 0.157 g/ml, and M = 0.15 
cm gives: 

k = 6.7 X cm/sec (Eq. 17) 

Equation 14 may be written: 

In [ s l o p e / m ]  = In (1/M) +  CUD^ + In (2kC,/p) (Eq. 18) 

To test this equation, dissolution rate studies were conducted at  
25O with samples of oxalic acid dihydrate having the same stan- 
dard deviation and different means (Fig. 8). This plot is a straight 

I I I 

0.05 0.10 

ODZ 

Figure 'I-plot of weight-independent cube root slope versus 
variance of particle population. 
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Figure 8-Plot of weight-independent cube root slope vereua re- 
ciprocal of geometric mean diameter. 

line ae predicted by Eq. 18; it has a slope of 0.94 and should have a 
slope of unity. 

Using the value of c from Fig. 7 (c = -3.07) and the value of the 
intercept from Fig. 8 (-6.8752), one can now calculate k, since: 

CUD' + In (2kC,/p) = -6.8752 (Eq. 19) 

k = 7.8 X cm/sec (Es. 20) 

Inserting the values for c, C,, p. and UD = 0.3569, one obtains: 

Table V shows that the average weight-independent slopes of 
powders with a mean diameter of 1500 pm and a variance of U D ~  = 
0.0618 have a value of 7.16 X sec-l. Use of J%q. 14 and c = 
-3.07 gives a value of k oE 

k = 6.7 X cm/sec (Eq. 21) 

Although they are not identical, the three k values in Eqs. 17, 20, 
and 21 are of the same order of magnitude. This result supports 
the views stated in this report. 

According to Eq. 5, the slope, a, of a cube root plot is given by: 

a = (eXp[CUD2]) 2kCs/(pM) (Eq. 22) 

Inserting c = -3.07, U D ~  = 0.0618, M = 0.15 cm, p = 1.60 g/ml, and 

a = 29.64kC. (Eq. 23) 

The effect of temperature on dissolution is shown in Fig. 9 (and 
Fig. 4 for 25'). To examine the temperature dependence of a, it  is 

= 4.3 g"3, one gets the simpler expression: 

V I  I I I I I I L 
20 40 60 80 100 120 140 160 

SECONDS 

Figure 9-Cube root plots as a function of temperature; mean = 
1500 jm and SD = 0.108. The 2 5 O  data are shown in Fig. 4. 
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Figure 10-Solubility-temperature plot of oxalic acid dihydrate. 

necessary to know the temperature dependence of C, and k; C, 
was determined experimentally at various temperatures (Fig. 10). 
The least-squares fit of the line is: 

In c, = - + 7.355 
T (Eq. 24) 

where C, is expressed as grams per milliliter. If the viscosity of the 
dissolving medium (here assumed to be equal to the viscosity of 
water) is denoted 7 and r is the radius of the dissolved molecule, 
then the Stokes-Einstein equation requires that: 

1.38 X 10-16T 
b r  

hr6xq (Eq. 25) 

From Eqs. 23 and 25, the following expression is obtained: 

(IL = [(29.64)(1.38 X 10-16)/6x] C,T/(hrq) = 
2.17 X lO-“%?.T/(hra) (Ea. 26) 

It is noted that (hr) is an unknown quantity. If it is assumed to be 
temperature independent over the temperature range studied, 
then: 

In (a/T) = -In (q) + In C, + In [2.17 X 1O-l6/(hr)] = 
- In (7 )  + In C, - In (hr) - 36.07 (Eq. 27) 

The temperature dependence of the viscosity of water is: 

7 = 1.01 X low5 exp(2002/T) 

In (7 )  = 2002 (l/T) - 11.434 

(Eq. 28) 

or: 

(Eq. 29) 

Inserting Eqs. 24 and 29 into Eq. 27 gives: 

h(a/T)  =--- 4737 17.29 - In (hr) (Eq. 30) T 
The data from Fig. 9 are plotted according to Eq. 30 in Fig. 11 and 
the linearity is obvious. The least-squares fit is: 

In (a/T) = - 4760 + 6.756 (Eq. 31) 
T 

That the slopes are identical is evident, although the proximity of 
the two values in Eqs. 30 and 31 is accidental. Experimental error 
is such that agreement to within 1096 is considered adequate. 

Table V-Dissolution with Various Amounts of Initial 
Powder, W,, of a Powder with Mean Diameter of 1500 pm 
and SD 0.108 in 0.1 N HCl at 25” 

80 4.3 0.0313 7-28 1 0 - 3  _ _  
70 4.12 0.0281 6.84 10-3 
60 3.91 0.0286 7.31 10-3 
50 3.68 0.0263 7.15 10-3 

3.2 3.3 3.4 
lOOOlT 

Faure 11-Arrheniw plots of slope divided by absolute temper- 
ature (left)  and critical time multiplied by absolute temperature 
(right 1. 

The intercept from Eq. 31 equals that from %. 30, so: 

6.76 = 17.29 - In (hr) 

hr = exp(-24.05) = 4 X lo-” 

(Eq. 32) 

i.e., In (hr) = -24.05, so that: 

(Eq. 33) 

Since r is of the order of 10-s-10-7 cm, h would be of the order 

Carstensen and Musa (15) showed that the critical time is given 
of 40-4 pm, which is of the expected order of magnitude (3). 

in terms of the smallest diameter, ao, by: 

tc = aapl(2kCd (Eq. 34) 

so that Arrhenius plots of t,T should have the same numerical 
slope with opposite sign as Arrheniw plots of a / T .  This is the case, 
as demonstrated in Fig. 11. The definition of a0 for an actual crys- 
tal is vague, and the fact that allows comparison is that all of the 
powders in Fig. 11 have the same particle distribution and, hence, 
the same a0 by whatever definition. 

SUMMARY 

1. The experimental data presented here demonstrate that ini- 
tially a powder with log-normal distributed dimensions will dis- 
solve under sink conditions uia a cube root law as predicted pre- 
viously (15-17). The plots eventually are biphasic. 

2. The dependence of the slopes of the cube root plots on the 
mean diameter and on weight is as described previously (15). 

3. The dependence of the slopes of the cube root plots on the 
standard deviation of the powder distribution is as described pre- 
viously (17). 

4. The temperature dependence of the slopes of the cube root 
and of the critical times was derived theoretically and substantiat- 
ed by experiment. 
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Controlled Drug Release from Polymeric Delivery 
Devices 111: I n  Vitro-In Viuo Correlation for 
Intravaginal Release of Ethynodiol Diacetate from 
Silicone Devices in Rabbits 

YIE W. CHIEN *=, STANLEY E. MARES $, JOHN BERG $, SUSAN HUBER $, 
HOWARD J. LAMBERT *, and KENNETH F. KING 5 

Abstract Forty female rabbits were implanted with silicone va- 
ginal devices containing ethynodiol diacetate for up to 8 weeks. As 
predicted from in uitro studies, a Q - t1I2 (matrix-controlled) re- 
lease profile was observed in uiuo. The in uiuo drug release profile 
was compared with in uitro data measured at  three hydrodynamic 
conditions, and the diffusional resistance across the vaginal wall 
was estimated. Drug released from silicone devices yielded a pro- 
longed plasma level when compared with data following intravag- 
inal or intravenous administration of a solution dose. The rate con- 
stant for elimination was unchanged. The plasma concentration of 
the drug was related to the intravaginal drug release profile both 
theoretically and experimentally and was above the concentration 
required to inhibit fertilization. 

Keyphrases 0 Drug delivery systems-controlled release, poly- 
meric devices, ethynodiol diacetate in silicone matrix, in uitro-in 
uiuo correlation of intravaginal release, rabbits 0 Ethynodiol di- 
acetate-intravaginal release from silicone matrix, in uitro-in uiuo 
correlation, rabbits 0 Silicone matrix-ethynodiol diacetate deliv- 
ery system, in uitro-in uiuo correlation for intravaginal release, 
rabbits Vaginal devices-controlled release of ethynodiol diace- 
tate from silicone matrix, in uitro-in uiuo correlation, rabbits 

An in uitro drug release system, which allows a di- 
rect and rapid characterization of a drug release pro- 
file and mechanism, was recently reported from this 
laboratory (1). Two types of drug release mecha- 
nisms, matrix controlled and partition controlled, 
were observed when the drug release profiles of ethy- 
nodiol diacetate from silicone devices were followed 
daily in this system (2). 

To develop a device with a desirable, long-acting, 

drug release profile, it is necessary to examine intra- 
vaginal drug release mechanisms in animals to estab- 
lish an in uitro-in uiuo correlation. This paper re- 
ports results of drug release studies with silicone de- 
vices containing ethynodiol diacetate placed in the 
vaginal tracts of 40 rabbits for up to 8 weeks. 

EXPERIMENTAL 

In Vitro Release Studies-The apparatus for in uitro drug re- 
lease studies and the assay of drug samples were essentially the 
same as those reported previously (1). The ring-shaped silicone de- 
vice, containing 112.6 mg/cm3 of ethynodiol diacetate’, was 
mounted in the arms of a Plexiglas holder and then rotated a t  81 
or 30 rpm or held stationary (to simulate more closely the status of 
implants in the vaginal lumen) in 150 ml of a 75% polyethylene 
glycol 400 solution as the elution medium at 37O. The solution was 
mixed well prior to sampling, and the drug concentration in the 
medium was assayed daily (1, 2). The reproducibility of the in 
uitro Q/t1I2 profiles measured at  various dates within 1 year was 
excellent (Table I). 
In Vivo Release Studies-The same silicone devices as those 

used in the in uitro drug release studies were cut into sections of 1 
cm in length. One segment was inserted into the anterior vagina of 
each of 40 young adult New Zealand white female rabbits uia a 
midventral laparoelytrotomy. It was anchored with a single poly- 
ethylene suture knotted on one side of the implant (through the 
implant perpendicular to the long asis) and then drawn through 
the vaginal wall and knotted to a 1-cm section of medical-grade 
tubing2. 

1 sc-11800. 
Silastic, Dow Coming Corp., Midland, Mich. 
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